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ABSTRACT An integral part of the antiviral innate immune response is the APOBEC3
family of single-stranded DNA cytosine deaminases, which inhibits virus replication
through deamination-dependent and -independent activities. Viruses have evolved
mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a
ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is
Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellu-
lar APOBEC3B (A3B). The large subunit of the viral RNR, BORF2, causes A3B relocal-
ization from the nucleus to cytoplasmic bodies and thereby protects viral DNA dur-
ing lytic replication. Here, we use coimmunoprecipitation and immunofluorescence
microscopy approaches to ask whether this mechanism is shared with the closely re-
lated gammaherpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) and the
more distantly related alphaherpesvirus herpes simplex virus 1 (HSV-1). The large
RNR subunit of KSHV, open reading frame 61 (ORF61), coprecipitated multiple
APOBEC3s, including A3B and APOBEC3A (A3A). KSHV ORF61 also caused relocaliza-
tion of these two enzymes to perinuclear bodies (A3B) and to oblong cytoplasmic
structures (A3A). The large RNR subunit of HSV-1, ICP6, also coprecipitated A3B and
A3A and was sufficient to promote the relocalization of these enzymes from nuclear
to cytoplasmic compartments. HSV-1 infection caused similar relocalization pheno-
types that required ICP6. However, unlike the infectivity defects previously reported
for BORF2-null EBV, ICP6 mutant HSV-1 showed normal growth rates and plaque
phenotypes. Combined, these results indicate that both gamma- and alphaherpesvi-
ruses use a conserved RNR-dependent mechanism to relocalize A3B and A3A and
furthermore suggest that HSV-1 possesses at least one additional mechanism to
neutralize these antiviral enzymes.

IMPORTANCE The APOBEC3 family of DNA cytosine deaminases constitutes a vital
innate immune defense against a range of different viruses. A novel counterrestric-
tion mechanism has recently been uncovered for the gammaherpesvirus EBV, in
which a subunit of the viral protein known to produce DNA building blocks (ribonu-
cleotide reductase) causes A3B to relocalize from the nucleus to the cytosol. Here,
we extend these observations with A3B to include a closely related gammaherpesvi-
rus, KSHV, and a more distantly related alphaherpesvirus, HSV-1. These different viral
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ribonucleotide reductases also caused relocalization of A3A, which is 92% identical
to A3B. These studies are important because they suggest a conserved mechanism
of APOBEC3 evasion by large double-stranded DNA herpesviruses. Strategies to
block this host-pathogen interaction may be effective for treating infections caused
by these herpesviruses.

KEYWORDS APOBEC3A, APOBEC3B, innate antiviral immunity, herpesviruses,
ribonucleotide reductase

An important arm of the innate immune response lies in the APOBEC family of
single-stranded DNA cytosine deaminases (1–3). Each of the seven human

APOBEC3 (A3) enzymes, A3A to -D and A3F to -H, have been implicated in the restriction
and mutation of a variety of different human viruses, including retroviruses (HIV-1, HIV-2,
and human T cell leukemia virus type 1 [HTLV-1]) (4–8), endogenous retroviruses (human
endogenous retrovirus [HERV]) (9, 10), hepadnaviruses (hepatitis B virus [HBV]) (11, 12),
small DNA tumor viruses (human papillomavirus [HPV] and JC/BK polyomavirus [JC/BK-
PyV]) (13–17), and, most recently, the gammaherpesvirus Epstein-Barr virus (EBV) (18, 19). It
is difficult, if not impossible, to predict a priori which subset of APOBEC3 enzymes has the
potential to engage a given virus and, furthermore, how that virus might counteract
potentially restrictive A3 enzymes. For instance, the lentiviruses HIV-1 and HIV-2 encode an
accessory protein called Vif that heterodimerizes with the cellular transcription cofactor
CBF-� (core binding factor subunit beta) and recruits a cellular ubiquitin ligase complex to
trigger the degradation of restrictive A3 enzymes (20, 21).

Human herpesviruses can be grouped into three distinct subfamilies (alpha-, beta-,
and gammaherpesviruses) (phylogeny is shown in Fig. 1A). Pathogenic alpha- and
betaherpesviruses include herpes simplex virus 1 (HSV-1) and cytomegalovirus (CMV),
respectively, and the gammaherpesvirus subfamily includes EBV and Kaposi’s sarcoma-
associated herpesvirus (KSHV). We recently identified an A3 counteraction mechanism
for EBV (18). We demonstrated that the large subunit of the viral ribonucleotide
reductase (RNR), BORF2, inhibits APOBEC3B (A3B) by directly binding and relocalizing
it from the nucleus to the cytoplasmic compartment. This counteraction mechanism
prevents the normally nucleus-localized A3B enzyme from deaminating viral genomic
DNA cytosines to uracils during lytic replication. In the absence of BORF2, A3B inflicted
C/G-to-T/A mutations in EBV genomes and reduced viral titers and infectivity. We also
showed that the homologous protein from KSHV, open reading frame 61 (ORF61), is
similarly capable of binding and relocalizing A3B (18).

Here, we ask whether the viral RNR-mediated A3B counteraction mechanism is
specific for gammaherpesviruses or more generally acting by assessing interactions
between gammaherpesvirus BORF2/ORF61 and other human A3 enzymes and by
determining whether the more distantly related alphaherpesvirus HSV-1 has a similar
A3 neutralization mechanism (RNR nomenclature is shown in Fig. 1A, and protein
domains are depicted in Fig. 1B). We found that in addition to binding and relocalizing
A3B, both BORF2 and ORF61 were also capable of coimmunoprecipitation (co-IP) and
relocalization of A3A. Additionally, we found that the HSV-1 RNR large subunit, ICP6,
similarly binds and relocalizes both A3B and A3A. Overexpression studies showed that
ICP6 alone is sufficient for A3B and A3A relocalization. Infection studies with wild-type
and mutant viruses demonstrated that ICP6 mediates this relocalization activity in the
context of infected cells and that no other viral protein is capable of this relocalization
function. However, despite the likely conservation of the A3B/A relocalization mecha-
nism, the infectivity of ICP6 mutant HSV-1 was not affected by A3B or A3A, suggesting
the existence of a functionally redundant A3 neutralization mechanism.

RESULTS
EBV BORF2 and KSHV ORF61 bind and relocalize both A3B and A3A. Our

previous co-IP experiments indicated that EBV BORF2 interacts strongly with A3B and
weakly with A3A and A3F (see Fig. 1c in reference 18). EBV BORF2 was both necessary
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and sufficient to relocalize A3B in a variety of different cell types, including endogenous
A3B in the AGS gastric carcinoma cell line and the M81 B cell line (18). However, our
original studies did not address whether EBV BORF2 could functionally interact with
and relocalize any of these related human A3 enzymes. We therefore performed
immunofluorescence (IF) microscopy studies of U2OS cells overexpressing A3-mCherry
constructs with either an empty vector or BORF2-FLAG (Fig. 2A). As reported previously,
A3B is nuclear, A3A has a cell-wide localization, A3H is cytoplasmic and nucleolar, and
the other A3s are cytoplasmic (22–26). Also as expected, BORF2 caused a robust and
complete relocalization of nuclear A3B to perinuclear aggregates. Interestingly, BORF2
coexpression with A3A led to the presence of novel linear elongated structures
concomitant with normal A3A localization. The localization patterns of the other five
A3s were unchanged by BORF2 coexpression. Small BORF2 punctate structures were
also noted under all conditions, including the mCherry control, which is likely due to
transfected BORF2 interacting with endogenous A3B (previously shown to be elevated
in U2OS cells [18]). Similar A3B and A3A relocalization patterns were evident in Vero
cells, except that A3A was relocalized throughout the whole cell, without elongated
structures (Fig. 2B and data not shown).

Like EBV BORF2, KSHV ORF61 was also shown to coimmunoprecipitate and relocalize
A3B (18). However, our original studies did not examine the specificity of this interac-
tion in comparison with related human A3 enzymes. We therefore used co-IP experi-
ments to evaluate KSHV ORF61 interactions with a full panel of human A3 enzymes.
ORF61-FLAG was coexpressed with A3-hemagglutinin (HA) family members in 293T
cells, subjected to anti-FLAG affinity purification, and analyzed by immunoblotting (Fig.
3A). The ORF61-FLAG pulldown resulted in A3B recovery, as described previously (18).

FIG 1 Herpesvirus ribonucleotide reductases conservation. (A) Amino acid sequences from ribonucleotide reductase large subunits were aligned using
multiple-sequence comparison by log expectation (MUSCLE), and phylogeny was constructed using a neighbor-joining tree without distance corrections and
scaled for equal branch lengths. Shaded boxes indicate herpesvirus subfamilies, which group closely to established phylogenetic trees. Protein names for
human herpesvirus ribonucleotide reductase large and small subunits are shown on the right. (B) Schematic of representative RNR large subunit polypeptides
from alpha-, beta-, and gammaherpesviruses with conserved core sequences (colored) and unique N- and C-terminal extensions (gray). The diagram is
approximately to scale, with an �190-amino-acid (aa) portion of HSV-1 ICP6 omitted to fit the figure.
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FIG 2 EBV BORF2 relocalizes A3B and A3A. (A) Representative images of U2OS cells expressing the indicated A3-mCherry constructs alone or in
combination with a BORF2-FLAG construct. Cells were fixed at 48 h posttransfection, permeabilized, and stained with anti-FLAG antibody and Hoechst
stain. (B) Representative images of Vero cells expressing A3A/B-mCherry alone or in combination with BORF2-FLAG. Cells were fixed at 48 h posttrans-
fection, permeabilized, and stained with anti-FLAG antibody and Hoechst stain.
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FIG 3 KSHV ORF61 relocalizes A3B and A3A. (A) Coimmunoprecipitation of transfected KSHV ORF61-FLAG with the indicated A3-HA constructs in 293T cells.
Cells were lysed at 48 h posttransfection for anti-FLAG pulldown, and the resulting proteins were analyzed by immunoblotting. EBV FLAG-BORF2 transfections

(Continued on next page)
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In addition, the ORF61-FLAG IP also yielded a robust interaction with A3A and weaker
interactions with A3D and A3F.

These KSHV ORF61-A3 interactions were then evaluated by IF microscopy experi-
ments to look for changes in A3 localization in U2OS cells (Fig. 3B). As expected (18),
KSHV ORF61 caused A3B to relocalize to perinuclear bodies. Moreover, as described
above for BORF2 and A3A, ORF61 coexpression caused a portion of the cellular A3A to
localize to intense elongated linear structures in the cytosolic compartment (Fig. 3B).
No other A3 proteins showed an altered subcellular localization in these experiments.
Similar IF microscopy observations were made using the same constructs in HeLa cells
(data not shown). Combined, these new results indicate that both A3B and A3A are
cellular targets of EBV BORF2 and KSHV ORF61. The potential relevance of these
interactions to the pathogenesis of these viruses is considered in Discussion.

HSV-1 ICP6 binds and relocalizes A3B and A3A. To test whether the RNR-
mediated A3B/A relocalization mechanism is more broadly conserved, a series of co-IP
experiments was done with the large RNR subunit of the pathogenic alphaherpesvirus
HSV-1, ICP6. FLAG-ICP6 was coexpressed with each of the seven different HA-tagged
human A3s in 293T cells and subjected to anti-FLAG IP as described above. The EBV
BORF2-A3B interaction was used as a positive control and the BORF2-A3G interaction
was used as a negative control to be able to compare the relative strengths of pulldown
between RNRs and A3s. HSV-1 ICP6 showed a strong interaction with A3A and weaker,
but detectable, interactions with A3B, A3C, and A3D (Fig. 4A).

Next, IF microscopy was used to assess functional interactions between HSV-1 ICP6
and each of the human A3 enzymes. Human U2OS osteosarcoma cells were cotrans-
fected with mCherry-tagged A3s and either an empty vector or FLAG-tagged HSV-1
ICP6 and analyzed by IF after 48 h (Fig. 4B). On its own, EBV BORF2 shows a cytoplasmic
distribution, and as shown above and previously (18), it was able to completely
relocalize A3B from the nucleus to the cytoplasm. In comparison, HSV-1 FLAG-ICP6
showed a broadly cytoplasmic localization that did not change significantly with
coexpression of any A3. However, coexpression of FLAG-ICP6 and A3B-mCherry or
A3A-mCherry led to a near-complete relocalization of these DNA deaminases from the
nucleus to the cytoplasm. HSV-1 ICP6 did not cause a significant relocalization of any
of the other A3s. The dramatic relocalization results with A3B and A3A suggested that
functionally relevant interactions may be occurring with these enzymes.

HSV-1 infection relocalizes A3B, A3A, and A3C. To address whether HSV-1
infection similarly promotes the relocalization of A3B and A3A, U2OS cells were
transfected with A3-mCherry constructs 48 h prior to either mock or HSV-1 infection.
We used K26GFP, an HSV-1 strain that has a green fluorescent protein (GFP) moiety
fused to the capsid protein VP26 to allow the identification of infected cells (27). Cells
were analyzed by IF microscopy at 8 h postinfection (hpi) (Fig. 5A). Similar to the ICP6
overexpression experiments described above, HSV-1 infection caused A3A to relocalize
to the cytoplasmic compartment and caused A3B to change from a predominantly
nuclear localization to a more cell-wide distribution. A3C also changed from a predom-
inantly cytoplasmic localization to a more diffuse whole-cell distribution, whereas A3D,
A3F, A3G, and A3H were unchanged by HSV-1 infection. In an independent experiment,
quantification was done for the HSV-1-induced relocalization of A3A-mCherry, A3B-
mCherry, and, as a representative nonaltered control, A3G-mCherry (Fig. 5B). This
analysis confirmed that HSV-1 infection leads to significant changes in both A3A and
A3B localizations, whereas A3G is unaffected. Similar relocalization patterns were found
in HeLa cells following HSV-1 K26GFP infection (data not shown). Moreover, time course
experiments showed that relocalization of A3A was detectable by as early as 3 hpi, A3B

FIG 3 Legend (Continued)
with A3B and A3G were used as positive and negative co-IP controls, respectively. (B) Representative images of U2OS cells transfected with either A3-mCherry
or FLAG-RNR constructs. Cells were fixed at 48 h posttransfection, permeabilized, and stained with anti-FLAG antibody and Hoechst stain. Cotransfection with
A3B-mCherry and EBV BORF2-FLAG was used as a positive control for relocalization from nuclear to cytoplasmic aggregates. A3 localization was compared
in the presence and absence of KSHV ORF61-FLAG cotransfection.
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FIG 4 HSV-1 ICP6 binds and relocalizes A3B and A3A. (A) Coimmunoprecipitation of transfected HSV-1 FLAG-ICP6 with the indicated A3-HA constructs
in 293T cells. Cells were lysed at 48 h posttransfection for anti-FLAG pulldown, and the resulting proteins were analyzed by immunoblotting. EBV

(Continued on next page)
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and A3C relocalization became apparent by 6 or 9 hpi, and A3G was not observed to
relocalize at any time point (Fig. 6 and data not shown). These kinetic differences may
reflect differential affinities of the viral protein(s) for binding to these cellular A3
enzymes and/or different competitions with cellular interactors.

HSV-1-mediated relocalization of A3B and A3A requires ICP6. To investigate
whether the HSV-1 large RNR subunit is required for A3A/B/C relocalization, we next
examined A3 localization in cells following infection with an HSV-1 KOS1.1 strain
lacking ICP6 due to a deletion of the UL39 gene (UL39 encodes ICP6) (28). Vero cells
were transfected with A3-mCherry constructs 48 h prior to mock infection or infection
with KOS1.1 or KOSΔICP6. After 8 h, cells were fixed, permeabilized, and subjected to IF
analysis by staining for the HSV-1 immediate early protein ICP27 to mark infected cells
and monitoring A3 localization through mCherry fluorescence. As described above,
HSV-1 infection caused the relocalization of A3A, A3B, and A3C (Fig. 7A). However, only
the relocalization A3A and A3B was ICP6 dependent, whereas A3C redistributed
regardless of the presence of ICP6. Quantification of A3A and A3B relocalization showed
that these proteins were not significantly changed upon KOS1.1ΔICP6 infection com-
pared to mock-infected cells (Fig. 5B). These results provide strong support for the
mechanistic conservation of the RNR large subunit interaction with A3A and A3B and
also indicate that A3C relocalization by HSV-1 is mechanistically distinct.

To further investigate the role of ICP6 in mediating A3A and A3B relocalization,
U2OS cells were infected with an HSV-1 KOS mutant with a deletion in the ICP4 gene
(29). ICP4, an immediate early protein, is the major transcriptional activator protein of
HSV-1 (29). ICP4-null mutants exhibit a strict block of the expression of nearly all viral
delayed-early and late genes but are competent to express the viral immediate early
genes (ICP0, ICP22, UL54, and US12) as well as the UL39 gene, a delayed-early gene that
is uniquely transactivated by ICP0 (30). In fact, at intermediate and late times postin-
fection, ICP4-null mutants express abnormally high levels of these immediate early
proteins as well as ICP6 (29). Similar to what was seen for wild-type HSV-1 infection,
infection with the HSV-1 KOSΔICP4 mutant also led to A3A and A3B relocalization but
with noticeably more pronounced phenotypes (Fig. 7B; also see Fig. 5B for quantifica-
tion of data from an independent experiment). For instance, this mutant virus caused
A3B-mCherry to form perinuclear aggregates reminiscent of previously observed
BORF2-A3B bodies (18) (Fig. 7B). Interestingly, A3C localization became predominantly
nuclear upon HSV-1 KOSΔICP4 infection, suggesting that one of the other four imme-
diate early proteins besides ICP4 induces its relocalization. Taken together, these data
show that HSV-1 ICP6 is both necessary and sufficient for the relocalization of A3A and
A3B and that at least one other viral factor is responsible for A3C relocalization.
Identification of this factor will be the subject of a future investigation.

Effect of A3B and A3A on HSV-1 replication. We next sought to test the effect of
A3 expression on HSV-1 replication, with or without ICP6. HFF-1 cells were stably
transduced to express HA-tagged A3 constructs and then infected at a low multiplicity
of infection (MOI) (0.001 PFU/cell) with wild-type HSV-1 KOS1.1 or KOSΔICP6. At 48 hpi,
the cultures were harvested, and after freeze-thawing to release infectious progeny, the
titers were determined on Vero cells to compare levels of virus production. As previ-
ously described, KOSΔICP6 exhibited a 1- to 2-log defect in virus replication compared
to wild-type KOS (28). However, there was no significant difference in either KOS1.1 or
KOSΔICP6 virus titers produced from control HFF-1 cells or HFF-1 cells expressing
different A3 family members (Fig. 8A).

To further test whether A3B or A3A can restrict HSV-1 replication, we performed
plaque assays on U2OS and Vero cells stably transduced with HA-tagged A3 constructs.

FIG 4 Legend (Continued)
FLAG-BORF2 transfections with A3B and A3G were used as positive and negative co-IP controls, respectively. (B) Representative images of U2OS cells
transfected with either A3-mCherry or FLAG-RNR constructs. Cells were fixed at 48 h posttransfection, permeabilized, and stained with anti-FLAG
antibody and Hoechst stain. Cotransfection with A3B-mCherry and EBV FLAG-BORF2 was used as the positive control for relocalization from nuclear to
cytoplasmic aggregates. A3 localization was compared in the presence and absence of HSV-1 FLAG-ICP6 cotransfection.
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FIG 5 HSV-1 infection relocalizes A3B and A3A. (A) Representative images of U2OS cells transfected with A3-mCherry constructs, followed by mock
or HSV-1 K26GFP infection at 48 h posttransfection. Cells were fixed at 8 hpi, stained with Hoechst stain, and then imaged directly. The viral capsid
protein VP26 is tagged with GFP, which marks infected cells. (B) Quantification of A3 localization patterns in U2OS cells after mock infection or
infection with different HSV-1 strains. The mean fluorescence intensity of the nuclear signal was divided by that of the cytoplasmic compartment.
Statistical analysis was performed using unpaired Student’s t test between the indicated groups (n.s., not significant [P � 0.01]).

APOBEC3 Relocalization by Herpesviral RNRs Journal of Virology

December 2019 Volume 93 Issue 23 e01539-19 jvi.asm.org 9

https://jvi.asm.org


Confluent monolayers were incubated with serial dilutions of KOS1.1 or KOSΔICP6 and
incubated for 3 days to allow plaque formation. However, expression of A3A or A3B did
not have a discernible effect on the number or size of KOS1.1 or KOSΔICP6 plaques (Fig.
8B). These data suggest that even without ICP6, HSV-1 is not readily susceptible to
restriction by A3A or A3B, possibly because it possesses other defenses against these
virus restriction factors.

DISCUSSION

We previously described a novel mechanism for A3B counteraction by the gamma-
herpesvirus RNR large subunits, EBV BORF2 and KSHV ORF61 (18). These viral proteins
interact directly with A3B, inhibit its DNA deaminase activity, and relocalize it from the
nuclear to the cytoplasmic compartment. The importance of this A3B counteraction
mechanism is evidenced by BORF2-null EBV eliciting lower viral titers, decreased
infectivity, and an accumulation of A3B signature C/G-to-T/A mutations. Here, we
investigated the question of specificity by comparing interactions with the full reper-
toire of seven different human A3 enzymes, and we also addressed the potential for
broader conservation by asking whether the alphaherpesvirus HSV-1 possesses a similar
APOBEC3 relocalization mechanism. Although EBV BORF2 and KSHV ORF61 were able
to interact with several different A3 proteins in co-IP experiments, these viral RNR large
subunits promoted the relocalization of only A3B and A3A. HSV-1 ICP6 showed a
similarly broad range of co-IP interactions but also promoted the relocalization of only
A3B and A3A. Wild-type but not ICP6 deletion mutant HSV-1 infections yielded similar
A3B and A3A relocalization phenotypes. Combined, data from these studies indicate
that human gamma- and alphaherpesviruses possess a conserved A3B/A relocalization
mechanism mediated by the viral RNR large subunit.

FIG 6 Time course of HSV-1-mediated relocalization of A3B and A3A. Shown are representative images of U2OS cells transfected with A3-mCherry constructs,
followed by mock or HSV-1 KOS1.1 infection at 48 h posttransfection. Cells were fixed at either 3, 6, 9, or 12 hpi and stained with anti-ICP27 antibody to mark
infected cells and Hoechst stain to stain the nuclear compartment.
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FIG 7 A3B and A3A relocalization is dependent on HSV-1 ICP6. (A) Representative images of Vero cells transfected with A3-mCherry
constructs, followed by mock, wild-type HSV-1 KOS1.1, or HSV-1 KOS1.1ΔICP6 infection at 48 h posttransfection. Cells were fixed 8 h after
HSV-1 infection, permeabilized, and stained with anti-ICP27 antibody to mark infected cells and Hoechst stain. (B) Representative images
from an experiment similar to that described above for panel A, except using U2OS cells and the mutant virus HSV-1 KOS1.1ΔICP4.
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The gamma- and alphaherpesvirus subfamilies encode both large and small RNR
subunits (Fig. 1A). These RNRs are thought to serve the canonical function of synthe-
sizing deoxyribonucleotides by reducing the 2=-hydroxyl from ribonucleotide sub-
strates (31). While RNRs are essential for all cellular life, the requirement for endogenous
viral RNRs differs tremendously across viral families. For example, most small double-
stranded DNA (dsDNA) viruses and single-stranded DNA viruses do not encode RNRs
and instead rely on host-encoded RNRs for deoxyribonucleotide production (32, 33). On
the other hand, RNRs are almost ubiquitous among large dsDNA viruses, such as
herpesviruses and poxviruses, presumably due to high deoxynucleoside triphosphate
(dNTP) requirements during DNA replication (34–36). Betaherpesviruses such as CMV
are an exception, however, because they lack a small subunit, and the large subunit has
a defective catalytic site (37). In addition to ribonucleotide reductase activity, some viral
RNRs have been shown to engage in noncatalytic activities that result in proviral
phenotypes. For instance, the HSV-1 and HSV-2 large ribonucleotide reductase sub-
units, ICP6 and ICP10, respectively, have unique N-terminal extensions that block
caspase-8 activity to inhibit apoptosis and bind RIP3 to promote necroptosis (38–41)
(Fig. 1B). CMV UL45 also has antiapoptotic and pronecroptotic functions, suggesting
that this could be its predominant function (41–43).

The answer to the question of whether A3B, A3A, or both enzymes are most relevant
to gamma- and alphaherpesvirus pathogenesis is likely to depend, at least in part, on
the complex interplay between viral tropism(s) and alternating modes of latent versus
lytic replication. For EBV, epithelial cells serve as the source of primary infection, which
are mandatory for establishing lytic replication cycles for person-to-person spread and
enabling secondary infection of B lymphocytes for establishment of long-term latency
(44). B cells also support lytic reactivation for reinfection and maintenance of EBV in the
blood (45). Here, A3B may be more important than A3A simply because its expression
is well documented in these cell types (46, 47). Likewise, KSHV infects epithelial and B
cells but also engages in infection of clinically relevant endothelial cells, which can lead
to Kaposi’s sarcoma (48). Additionally, because monocytes are likely to be a secondary
reservoir for KSHV infection (49–51), it is plausible that this virus requires the capacity
to relocalize both A3B and A3A (A3B neutralization for replication in B cells and A3A
neutralization for replication in monocytes/macrophages, where A3A is interferon
inducible and capable of being expressed at extremely high levels [46, 52, 53]). For
HSV-1, although neither A3B nor A3A expression has been reported in neural/central
nervous system (CNS) cells, lytic replication in epithelial cells may require functional
neutralization of A3B and/or A3A (54, 55).

FIG 8 A3B and A3A do not impact HSV-1 replication or plaque formation. (A) Bar plot of HSV-1 titers produced from
HFF-1 cells stably transduced with the control vector or the indicated HA-tagged A3 constructs. Cells were infected
in triplicate at an MOI of 0.002 PFU/cell with either HSV-1 KOS1.1 or KOSΔICP6. The infected cultures were
harvested at 48 hpi, and titers were determined on Vero cells to determine the level of viral progeny production.
Statistical analysis was performed using unpaired Student’s t test (n.s., not significant [P � 0.01 for all compari-
sons]). (B) Bar plot of KOS1.1 or KOSΔICP6 mutant stock titers determined on U2OS or Vero cells stably transduced
with the control vector or the indicated HA-tagged A3 constructs. The cells were fixed at 72 hpi and stained with
Giemsa stain for counting. WT, wild type.
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The observation that the HSV-1 ΔICP6 mutant replicates at levels similar to those of
wild-type HSV-1 in the presence of A3B or A3A was unexpected but not entirely
surprising. Given the large genomes of herpesviruses, it is possible that other viral
proteins may have overlapping redundant functions in A3 counteraction and/or repair
mechanisms to overcome A3-mediated hypermutation. One prime candidate is the
virally encoded uracil DNA glycosylase (UDG), encoded by the UL2 gene, which has
been shown to associate with the HSV-1 DNA polymerase in the infected cell nucleus
(56). Consistent with this idea, we previously found that inhibition of the EBV UDG
through expression of a universal UDG inhibitor (Ugi) results in enhanced A3B-
mediated hypermutation of EBV genomes (18). It is thus possible that HSV-1 UL2
mediates the repair of uracil lesions generated by A3 enzymes, allowing the virus to
tolerate moderate levels of mutation in the absence of ICP6. It is also conceivable that
HSV-1 encodes an additional, novel A3A/B neutralization or escape mechanism that is
able to fully compensate for the loss of ICP6 function (at least in the cell types tested
here). Alternatively, inherent differences in viral DNA replication between HSV-1 and
EBV could account for differences in replication phenotypes. HSV-1 replicates faster
than EBV (57), which could result in less accessible single-stranded DNA for A3-
mediated deamination. Finally, the lack of an in vitro infectivity phenotype does not
preclude in vivo disease relevance. Although previous studies have tested the impact of
A3A and A3G (and APOBEC1) on wild-type HSV-1 replication in transgenic mice (58, 59),
dedicated functional studies with mutants that at least partly cripple each virus’s A3
relocalization mechanism(s) in the most disease-relevant in vivo systems will be re-
quired to fully address the question of whether A3B, A3A, or both enzymes are relevant
to the pathogenesis of these herpesviruses.

MATERIALS AND METHODS
Generation of a herpesvirus phylogenetic tree. Amino acid sequences for the following herpes-

virus ribonucleotide reductase large subunits were obtained from the NCBI Protein RefSeq database:
HSV-1 ICP6 (GenBank accession number YP_009137114.1), HSV-2 ICP10 (GenBank accession number
YP_009137191.1), varicella-zoster virus (VZV) ORF19 (GenBank accession number NP_040142.1), EBV
BORF2 (GenBank accession number YP_401655.1), human cytomegalovirus (HCMV) UL45 (GenBank
accession number YP_081503.1), human herpesvirus 6A (HHV6A) U28 (GenBank accession number
NP_042921.1), HHV6B U28 (GenBank accession number NP_050209.1), HHV7 U28 (GenBank accession
number YP_073768.1), and KSHV ORF61 (GenBank accession number YP_001129418.1). The alignment
was generated using MUSCLE (multiple-sequence alignment with high accuracy and high throughput)
(60), and a phylogenetic tree was made using a neighbor-joining tree without distance corrections. The
output was made using FigTree, using scaled branches (61).

DNA constructs for expression in human cell lines. The full set of pcDNA3.1(�) human APOBEC-HA
expression constructs was described previously (62) (A3A [GenBank accession number NM_145699], A3B
[GenBank accession number NM_004900], A3C [GenBank accession number NM_014508], A3D [GenBank
accession number NM_152426], A3F [GenBank accession number NM_145298], A3G [GenBank accession
number NM_021822], and A3H [haplotype II] [GenBank accession number FJ376615]). The full set of
APOBEC-mCherry expression constructs was PCR amplified with Phusion high-fidelity DNA polymerase
(catalogue number M0530; NEB) from previously described A3-mCherry constructs (22) and subcloned
into pcDNA5/TO (catalogue number V103320; Invitrogen). The forward PCR primers are as follows:
5=-NNN NAA GCT TAC CAC CAT GGA AGC C-3= for A3A, 5=-NNN NNA AGC TTA CCA CCA TGA ATC CA-3=
for A3B and A3C, 5=-NNN NNA AGC TTA CCA CCA TGA ATC CA-3= for A3D, 5=-NNN NNA AGC TTA CCA
CCA TGA AGC CT-3= for A3F, 5=-NNN NAA GCT TAC CAC CAT GAA GCC T-3= for A3G, and 5=-NNN NAA GCT
TAC CAC CAT GGC TCT G-3= for A3H. The reverse PCR primer used was 5=-AGA GTC GCG GCC GCT TAC
TTG TAC A-3=. PCR fragments were digested with HindIII-HF (catalogue number R3104; NEB) and NotI-HF
(catalogue number R3189; NEB) and ligated into pcDNA5/TO. The full set of pLenti-iA3i-HA constructs
was previously described, except that the puromycin resistance gene was replaced with a hygromycin
resistance gene (63). Briefly, this is a lentiviral construct with an intron spanning the A3 gene with a
C-terminal 3�HA tag, arranged in the antisense direction, which is expressed after reverse transcription
and integration. This construct bypasses the limitation of self-restriction by A3-mediated deamination of
its own plasmid.

EBV BORF2 (GenBank accession number V01555.2) with a C-terminal 3�FLAG (DYKDDDDK) tag and
EBV BaRF1 (GenBank accession number V01555.2) with a C-terminal 3�HA (YPYDVPDYA) tag were
previously described (18). Other viral RNRs were subcloned with Phusion high-fidelity DNA polymerase
from previously described pCMV-3F vectors (18).

KSHV ORF61 (GenBank accession number U75698.1) was PCR amplified using primers 5=-NNN NGA
ATT CGC CAC CAT GTC TGT CCG GAC ATT TTG T-3= and 5=-NNN NGA ATT CGC CAC CAT GTC TGT CCG
GAC ATT TTG T-3=, digested with EcoRI-HF (catalogue number R3101S; NEB) and NotI-HF, and ligated into
pcDNA4 with a C-terminal 3�FLAG tag. The same construct was PCR amplified using primers 5=-NNN
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NGC GGC CGC GTC TGT CCG GAC ATT TTG T-3= and 5=-NNN NTC TAG ATT ACT GAC AGA CCA GGC ACT
C-3=, digested with NotI-HF and XbaI, and ligated into a similar pcDNA4 vector with an N-terminal
3�FLAG tag.

HSV-1 UL39 (GenBank accession number JN555585.1) was PCR amplified using primers 5=-NNN NGA
TAT CCG CCA CCA TGG CCA GCC GCC CAG CC-3= and 5=-NNN NGC GGC CGC CCC AGC GCG CAG CT-3=,
digested with EcoRV-HF (catalogue number R1395; NEB) and NotI-HF, and ligated into pcDNA4 (cata-
logue number V102020; Invitrogen) with a C-terminal 3�FLAG tag (20). The same construct was PCR
amplified using primers 5=-NNN NGC GGC CGC GGC CAG CCG CCC AGC CGC A-3= and 5=-NNN NTC TAG
ATT ACA GCG CGC AGC TCG TGC A-3=, digested with NotI-HF and XbaI (catalogue number R0145S; NEB),
and ligated into a similar pcDNA4 vector with an N-terminal 3�FLAG tag.

Human cell culture. Unless indicated otherwise, cell lines were derived from established laboratory
collections. All cell cultures were supplemented with 10% heat-inactivated fetal bovine serum (catalogue
number 16140-063; Gibco) and 1� penicillin-streptomycin (catalogue number 15140122; Thermo Fisher)
and periodically tested for mycoplasma (MycoAlert Plus, catalogue number LT07-710; Lonza). No cell
lines have ever been mycoplasma positive or previously treated. 293T, Vero, and HFF-1 cells were
cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (HyClone), U2OS cells were
cultured in McCoy’s 5A medium (HyClone), and HeLa cells were cultured in RPMI 1640 (Corning).

Coimmunoprecipitation experiments and immunoblotting. Semiconfluent 293T cells were grown
in 6-well plates and transfected with plasmids and 0.6 �l TransIT-LT1 (catalogue number 2304; Mirus) per
100 ng DNA in 100 �l serum-free Opti-MEM (catalogue number 31985062; Thermo Fisher). A titration
series was performed to achieve roughly equivalent protein expression levels by immunoblotting for the
A3 panel and RNR homologue in co-IP experiments. Growth medium was removed after 48 h, and whole
cells were harvested in 1 ml phosphate-buffered saline (PBS)-EDTA by pipetting. Cells were spun down,
PBS-EDTA was removed, and cells were resuspended in 300 �l of ice-cold lysis buffer (150 mM NaCl,
50 mM Tris-HCl, 10% glycerol, 1% IGEPAL [catalogue number I8896; Sigma], and a cOmplete EDTA-free
protease inhibitor cocktail tablet [catalogue number 5056489001; Roche] [pH 7.4]). Cells were vortexed
vigorously, left on ice for 30 min, and then sonicated for 5 s in an ice water bath. Thirty microliters of the
whole-cell lysate was aliquoted for immunoblotting. Lysed cells were spun down at 13,000 rpm for 15
min to pellet debris, and the supernatant was added to a clean tube with 25 �l resuspended anti-FLAG
M2 magnetic beads (catalogue number M8823; Sigma) for overnight incubation at 4°C with gentle
rotation. Beads were then washed three times in 700 �l of ice-cold lysis buffer. Bound protein was eluted
in 30 �l of elution butter (0.15 mg/ml 3�FLAG peptide [catalogue number F4799; Sigma] in 150 mM
NaCl, 50 mM Tris-HCl, 10% glycerol, and 0.05% Tergitol [pH 7.4]). Proteins were analyzed by immuno-
blotting, and antibodies used included mouse anti-FLAG (1:5,000) (catalogue number F1804; Sigma),
mouse antitubulin (1:10,000) (catalogue number T5168; Sigma), and rabbit anti-HA (1:3,000) (catalogue
number C29F4; Cell Signaling).

HSV-1 infections and plaque assays. The HSV-1 strains used were wild-type strain KOS1.1 (64),
K26GFP (27), the ICP6 deletion mutant ICP6Δ (28), and the ICP4 deletion mutant d120 (29). Titers of viral
stocks were determined by plaque assays on either Vero cells (KOS1.1, K26GFP, and ICP6Δ) or ICP4-
complemented E5-Vero cells (65). HSV-1 infections were carried out as described previously (66). For
microscopy experiments, cells were infected at an MOI of 5 PFU/cell. To assay HSV-1 replication in
A3-transduced HFF-1 cells, cells were infected at an MOI of 0.001 PFU/cell and incubated for 48 h, at
which time a volume of sterilized milk equal to the volume of infected cell medium was added to each
well, and the cells were frozen at �80°C. Infectious progeny virus was released by 3 cycles of
freeze-thawing, and the titer was determined on Vero cells. HSV-1 plaque assays were carried out in
liquid medium supplemented with 1% pooled normal human serum as previously described (66). For the
HSV-1 plaque assays, U2OS or Vero cells were stably transduced with A3 constructs prior to carrying out
plaque assays.

IF microscopy. For IF imaging of transfected cells, approximately 5 � 104 Vero, HeLa, or U2OS cells
were plated on coverslips and, after 24 h, transfected with 200 ng pcDNA4-RNR-3�FLAG, 200 ng
pcDNA5/TO-A3-mCherry, or both. After 48 h, cells were fixed in 4% formaldehyde, permeabilized in 0.2%
Triton X-100 in PBS for 10 min, washed three times for 5 min in PBS, and incubated in blocking buffer
(0.0028 M KH2PO4, 0.0072 M K2HPO4, 5% goat serum [Gibco], 5% glycerol, 1% cold water fish gelatin
[Sigma], 0.04% sodium azide [pH 7.2]) for 1 h. Cells were then incubated in blocking buffer with primary
mouse anti-FLAG (1:1,000) overnight at 4°C to detect FLAG-tagged RNRs. Cells were washed 3 times for
5 min with PBS and then incubated with the secondary antibody goat anti-mouse Alexa Fluor 488
(1:1,000) (catalogue number A11001; Invitrogen) diluted in blocking buffer for 2 h at room temperature
in the dark. Cells were then counterstained with 1 �g/ml Hoechst 33342 for 10 min and rinsed twice for
5 min in PBS and once in sterile water. Coverslips were mounted on precleaned slides (Gold Seal Rite-On)
using 20 to 30 �l of mounting medium (dissolved with 1 g n-propyl gallate [Sigma] in 40 ml glycerol and
then pH adjusted to 8 to 8.5 by adding 0.35 ml of 0.1 M KH2PO4 and water to a final volume of 50 ml).
Slides were imaged on a Nikon inverted Ti-E deconvolution microscope instrument and analyzed using
NiS Elements.

For immunofluorescence imaging of HSV-1-infected cells, approximately 5 � 104 Vero, HeLa, or U2OS
cells were plated on coverslips and, after 24 h, transfected with 200 ng pcDNA5/TO-A3-mCherry. After
48 h, cells were infected with HSV-1 K26GFP, HSV-1 KOS1.1, HSV-1 KOS1.1ΔICP6, or HSV-1 KOS1.1ΔICP4
at an MOI of 5. Cells were fixed in 4% formaldehyde at 8 h postinfection, and IF studies were then
performed as described above. Time course experiments were fixed at either 3, 6, 9, or 12 h postinfection.
HSV-1 K26GFP experiments did not require primary or secondary antibody staining steps. Cells infected
with HSV-1 KOS1.1 and mutants were incubated with the primary antibody mouse anti-HSV-1 ICP27
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H1113 (catalogue number sc69807; Santa Cruz) (1:1,000) overnight at 4°C to detect HSV-1-infected cells.
Secondary antibody staining, counterstaining with Hoechst stain, mounting, and imaging were per-
formed as described above.

IF microscopy quantification. For quantification of the ratio of nuclear/cytoplasmic A3, IF images
were analyzed using Fiji software to obtain mean fluorescence intensities (MFIs) of nuclear compart-
ments, determined by Hoechst stain outlines, and cytoplasmic compartments, determined by cell
outlines. MFI values for each compartment were divided and plotted using Prism. Statistical analyses
were performed using unpaired Student’s t test.
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